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Abstract 

The equipment used for growing crystals in the form of sheets and tubes by capillary 
action shaping technique (CAST) under protective atmosphere is described which 
has been locally designed and fabricated. The growth of LiF crystals in the form of 
sheets and tubes and Silicon crystals in the form of sheets is described. Si crystals 
measuring 8 - 10 mm wide, 1 - 1.5 mm thick and 10 - 12 cm long have been grown in 
the present experiments.

1. INTRODUCTION 

Several techniques have been developed to 
grow crystals in different shapes in the recent 
years [1-5]. Some of these have been applied to 
grow Silicon in the form of sheets to avoid the 
steps of cutting and polishing which not only 
waste energy and effort but also lead to loss in 
silicon called Kerf loss.  These include the 
dendritic web process [6-8], the Stepanov 
technique [9,10], the edge-defined film-fed 
growth technique (EFG) [3,4,11] which was first 
applied to silicon by Ciszek [12] and 
subsequently improved by Ciszek and Schwuttke 
[13,14] termed capillary action shaping technique 
(CAST). These new techniques have been 
applied to the high speed growth of Si sheets, 
nonagons and tubes [3-5,15]. In this method the 
liquid is raised to the top of a die by capillary 
action and crystal growth takes place on top of 
the die away from the melt surface in the 
crucible. Crystals can be grown at much higher 
rates compared to Czochralski (CZ) technique. 
The shape of growing crystal is determined by 
the shape of the die top surface. Thus this 
method is advantageous in producing crystals of 
required dimensions with controlled dopant 

concentrations and produces them continuously 
at high speeds (1-7 cm/min) [10]. 

 In an effort to grow Silicon crystals in the 
form of sheets we took up the development of 
the CAST method which has not been attempted 
in India. The growth of LiF crystals in the form of 
sheets was tried first [16] and later extended to 
the growth of LiF tubes and on to Silicon sheets. 
The growth of LiF in the form of tubes and Si in 
the form of sheets in a modified vacuum cum 
atmosphere furnace is reported in the present 
communication.  

2.  EXPERIMENTAL DETAILS 

The crystal growth furnace is based on the 
design by Rao and Verma [17] and is 
schematically given in Fig. 1. It consists of a 
double walled water cooled stainless steel 
chamber (6) that can be operated both under 
vacuum or protective atmosphere. The chamber 
has four viewing and monitoring ports (12). The 
lid (5) contains the water cooled pulling tube (4) 
passing through a vacuum seal (2). The base 
plate accommodates feed-throughs for power, 
temperature measurement, gas inlet and outlet 
and a port for evacuation. Silicon is melted in a 
graphite crucible (13) heated by a graphite 
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used for providing thermal insulation around the 
graphite heater. The crucible is placed on a 
support (19) which is fixed to a stainless steel 
rod that passes through a vacuum seal. The rod 
could be moved up and down as well as rotated. 
The seed is fixed to a water cooled stainless 
steel tube (4) which can be taken in and out 
through a vacuum seal using the linear motion 
slide connected to a stepper motor whose speed 
could be varied from 99 RPM to 1 RPH. The 
position of the crucible and die with respect to 
graphite heater is maintained such that lower 
part of the crucible is held well above the melting 
point of silicon while top of the die at close the 
melting point.    

The materials for the die and crucible are chosen 
carefully in the CAST technique based on the 
considerations such as its wettability with silicon, 
chemical inertness with the melt and its stability 
at high temperature [11]. The wetting angle of 
graphite with molten silicon is 70o and that of 
silica is 36o. Basic relation that governs the 
capillary action is,  

gr
h

ρ
θγ cos2

=  

where h is the height to which the liquid rises in 
the capillary above the melt surface in the 
crucible, the surface tension γ of molten silicon is 
720 dynes/cm, liquid silicon density ρ is 2.56 
gm/cm3, g is the acceleration due to gravity.  For 
a capillary of 1 mm width, this gives ~ 2.3 cm for 
h using graphite for the die. Thus the crystal 
growth is carried out 2.3 cm above the molten 
liquid surface by the CAST technique which 
gives the advantage of shaping the resulting 
crystal and growing at faster rates since the 
volume of the liquid solidifying above the die top 
is small.  While stainless steel was preferred for 
the die and graphite for crucible in growing LiF 
crystals [16], we have used graphite for the die 
and silica for crucible for melting in case of Si. 
Since silica softens at the melting point of Silicon 
(1410oC), a graphite support crucible is used. A 
silica crucible fitted with a graphite die and filled 
with silicon powder is placed inside the graphite 
crucible which is then placed on the crucible 
support rod in the middle of the graphite heater. 
Appropriate graphite insulation is placed from the 
top of the heater and the lid is closed. The 

furnace chamber is then evacuated to a vacuum 
better than 0.01 mbar to reduce oxygen partial 
pressure. The system is then purged with argon 
gas at a suitable rate. The crucible is heated to 
the melting point of silicon with the help of the 
temperature programmer coupled to a 
homemade SCR power supply to control the 
temperature within +1oC as mentioned above. 
When the temperature is raised above the 
melting point of silicon (~1410oC) molten silicon 
rises to the top of the die through capillary action 
which could be seen from the viewing port. It was 
found that if argon (Ar) gas is not sufficiently pure 
the oxygen from the gas reacts with the Si melt 
and forms (silicon monoxide) SiO layer which 
prevents the capillary rise. It was also observed 
that a flow of highly pure Ar gas (< 2 ppm O2) is 
needed to maintain the meniscus on the die top. 

 To initiate crystal growth a thin rectangular 
graphite sheet was used to make silicon seed 
crystal plates initially and these Si seed crystals 
were used in the subsequent growth runs. When 
the seed is brought into contact with the liquid on 
the die top, the liquid forms a meniscus between 
the die top and the seed. The seed plate is 
pulled up at suitable speed to maintain the 
crystallization of the melt. After a while the 
crystal width increases to an equilibrium width. If 
the pulling rate is too large the crystal detaches 
and if the rate is too slow the crystal solidifies on 
the die top. By proper adjustment of the 
temperature and pull rate the width and 
thickness of the growing plate could be 
maintained at a desired value. Plates measuring 
1-2 mm thick, 8-12 mm wide and 8-12 cm long 
have been grown in the present experiments. 
Efforts are on to increase the width and length 
while reducing the thickness of the growing 
crystals by using argon gas jets to cool the 
growing crystal to increase the growth speed. 
Theoretical modeling of the thermal system has 
been performed to obtain the flow rates needed 
to get stable growth of the sheets [18]. 

After pulling crystal for the desired length, the 
growth is terminated by rapidly pulling the crystal 
away from the die. The furnace is cooled slowly 
initially up to 1000oC and rapidly thereafter to 
room temperature. The silicon crystal is taken 
out from the furnace, cut into samples of 
appropriate size for testing its properties. The 
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